Indian Journal of Medical Microbiology IAMM  | About us |  Subscription |  e-Alerts  | Feedback |  Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Ahead of Print | Current Issue | Archives | Search | Instructions  
Users Online: 1146 Official Publication of Indian Association of Medical Microbiologists 
 ~   Next article
 ~   Previous article
 ~   Table of Contents

 ~   Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~   Citation Manager
 ~   Access Statistics
 ~   Reader Comments
 ~   Email Alert *
 ~   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded585    
    Comments [Add]    

Recommend this journal


Year : 2015  |  Volume : 33  |  Issue : 4  |  Page : 533-537

Determination of minimum inhibitory concentrations of itraconazole, terbinafine and ketoconazole against dermatophyte species by broth microdilution method

Department of Microbiology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, India

Correspondence Address:
P C Sharma
Department of Microbiology, School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh
Login to access the Email id

Source of Support: Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Conflict of Interest: None

DOI: 10.4103/0255-0857.167341

Rights and Permissions

Purpose: Various antifungal agents both topical and systemic have been introduced into clinical practice for effectively treating dermatophytic conditions. Dermatophytosis is the infection of keratinised tissues caused by fungal species of genera Trichophyton, Epidermophyton and Microsporum, commonly known as dermatophytes affecting 20–25% of the world's population. The present study aims at determining the susceptibility patterns of dermatophyte species recovered from superficial mycoses of human patients in Himachal Pradesh to antifungal agents; itraconazole, terbinafine and ketoconazole. The study also aims at determining the minimum inhibitory concentrations (MICs) of these agents following the recommended protocol of Clinical and Laboratory Standards Institute (CLSI) (M38-A2). Methodology: A total of 53 isolates of dermatophytes (T. mentagrophyte-34 in no., T. rubrum-18 and M. gypseum-1) recovered from the superficial mycoses were examined. Broth microdilution method M38-A2 approved protocol of CLSI (2008) for filamentous fungi was followed for determining the susceptibility of dermatophyte species. Results: T. mentagrophyte isolates were found more susceptible to both itraconazole and ketoconazole as compared to terbinafine (MIC50: 0.125 µg/ml for itraconazole, 0.0625 µg/ml for ketoconazole and 0.5 µg/ml for terbinafine). Three isolates of T. mentagrophytes (VBS-5, VBSo-3 and VBSo-73) and one isolate of T. rubrum (VBPo-9) had higher MIC values of itraconazole (1 µg/ml). Similarly, the higher MIC values of ketoconazole were observed in case of only three isolates of T. mentagrophyte (VBSo-30 = 2 µg/ml; VBSo-44, VBM-2 = 1 µg/ml). The comparative analysis of the three antifungal drugs based on t-test revealed that 'itraconazole and terbinafine' and 'terbinafine and ketoconazole' were found independent based on the P < 0.005 in case of T. mentagrophyte isolates. In case of T. rubrum, the similarity existed between MIC values of 'itraconazole and ketoconazole' and 'terbinafine and ketoconazole'. Conclusion: The MIC values observed in the present study based on standard protocol M38-A2 of CLSI 2008 might serve as reference for further studies covering large number of isolates from different geographic regions of the state. Such studies might reflect on the acquisition of drug resistance among isolates of dermatophyte species based on MIC values.


Print this article     Email this article

2004 - Indian Journal of Medical Microbiology
Published by Wolters Kluwer - Medknow

Online since April 2001, new site since 1st August '04